Meat as a source of foodborne agents

Josef Kameník Department of Gastronomy

	Campylobacteriosis		(N =246,158)
	Salmonellosis		(N =91,662)
	Yersiniosis	(N = 6,823)	
	STEC infections	(N = 6,073)	Yersiniosis (N = 6,823)
	Listeriosis	(N = 2,480)	STEC infections (N = 6,073)
	Q fever	(N = 928)	Listeriosis $(N = 2,480)$
	s o Q Tularaemia	(N = 321)	Tularaemia (N = 321)
	Z Eshinessessia	(N = 927)	Echinococcosis (N = 827)
eport		(N = 027)	Brucellosis (N = 378)
•	Brucellosis	(N = 378	West Nile fever (N = 212)
	West Nile fever	(N = 212) ¹	TB caused by M. bovis (N = 185)
	TB caused by M. bovis	(N = 185)	Congenital toxoplasmosis $(N = 168)$ $(N=40)^2$
	Trichinellosis	(N = 168)	Rabies (N = 1)
	Congenital toxoplasmosis	(N=40) ²	0 1 2 3 Notification rate per 100,000 population ²
	Rabies	(N = 1)	
	(0 5 10	15 20 25 30 35 40 45 50 55 60 65 70 75
			Notification rate per 100,000 population ²

Foodborne Disease Outbreaks

- two or more confirmed case reports
- linked to the same incident
- involving a pathogen after the ingestion of a common food/ingredient
- by healthy individuals

(Manning et al., 2016)

Surveillance pyramid (Manning et al., 2016)

• 4 786 outbreaks

bacterial agents: 33.9%

o Salmonella: 22.3% (65.8% from bacterial agents)

- bacterial toxins: 17.7%
- viruses: 9.8%
- parasites: 0.4%
- others: 2.2%

EFSA report – strong evidence outbreaks

- the classification of outbreaks as either strong or weak evidence is based on an assessment of all available evidence:
 - o epidemiological evidenceo microbiological evidence

EFSA report – strong evidence outbreaks

• Epidemiological evidence:

- descriptive epidemiological evidence
- □ analytical epidemiological evidence

• Microbiological evidence

 a story is incomplete if it does not describe the what, who, where, when, and why/how of a situation,

• Epidemiologists strive for similar comprehensiveness in characterizing an epidemiologic event (the five W's).

- Epidemiologists strive for similar comprehensiveness in characterizing an epidemiologic event (**the five W's**):
 - What = health issue of concern
 - Who = person
 - Where = place
 - When = time
 - Why/how = causes, risk factors, modes of transmission

- Descriptive epidemiology covers
 - time,
 - □ The occurrence of disease changes over time.
 - □ Some of these changes occur regularly, while others are unpredictable.
 - □ For diseases that occur seasonally, health officials can anticipate their occurrence and implement control and prevention measures,

place,

Analyzing data by place can identify communities at increased risk of disease

person

 descriptive epidemiology can identify patterns among cases and in populations by time, place and person.

- From these observations, epidemiologists develop hypotheses:
 - **about the causes** of these patterns and
 - **about the factors that increase risk of disease**.

Analytic epidemiology

 epidemiologists can use descriptive epidemiology to generate hypotheses, but only rarely to test those hypotheses.

• For that, epidemiologists must turn to analytic epidemiology.

• The key feature of analytic epidemiology is **a comparison** (control) group.

Microbiological evidence

- Detection in food vehicle (or its component) and Detection of indistinguishable causative agent in humans
- Detection in food chain or its environment and Detection of indistinguishable causative agent in humans
- Detection in food vehicle (or its component) and Symptoms and onset of illness pathognomonic of the causative agent found in food vehicle or in food chain or its environment
- Detection in food chain or its environment and Symptoms and onset of illness pathognomonic of the causative agent found in food vehicle or in food chain or its environment

EFSA report – strong evidence outbreaks

- according to the reporting specifications, an outbreak is defined as either:
 - a household outbreak, in which only members of a single household are affected, or as
 - a general outbreak, in which members of more than one household are affected

- *"strong-evidence"* outbreaks (n = 521; i. e. 10.9% of the total outbreaks)
 - food of animal origin (n = 313)
 - eggs: 23.0 %
 - $\,\circ\,$ fish & fisheries: 22.4%
 - o meat & meat products: 21.7%
 - poultry meat: 18.5%
 - o milk & milk products: 14.4%

Salmonella

Bacterial toxins

C. botulinum

- Other causative agents
- Campylobacter

Other bacterial agents

Trichinella

Hepatitis A

Listeria

Viruses other than Calicivirus and Hepatitis A

Shígatoxin-producing E. coli (STEC)

Unknown

Yersinia

Calicivirus including Norwalk-like virus

Outbreak contributing factors

- inadequate heat treatment
- an infected food handler
- inadequate chilling
- inaccurate cooling (storage time/temperature abuse)
- cross-contamination
- unprocessed contaminated ingredient
- a combination of different contributory factors

EFSA (2018)

EU: meat as a vehiculum of food-borne agents (EFSA, 2018)

		Number of outbreaks [*]	% of total outbreaks	Number of cases	% of total cases
total		639	100.0	11,844	100.0
meat & meat products		121	18.9	2,888	24.4
* (strong evidence)					

EU: meat as a vehiculum of food-borne agents (EFSA, 2018)

		Number of outbreaks*	% of total outbreaks	Number of cases	% of total cases
total		639	100.0	11,844	100.0
Meat & meat products	subtotal	121	18.9	2,888	24.4
	Poultry meat	30	4.7	613	5.2
	unspecified	39	6.1	681	5.7
	pork	27	4.2	821	6.9
	beef	13	2.0	350	3.0
	sheep meat	2	0.3	110	0.9
	other/mixed	10	1.6	313	2.6

USA: EU: meat as a vehiculum of food-borne agents (Gorton, Stasiewicz, 2017)

EU: meat as a vehiculum of food-borne agents (EFSA, 2017)

		Number of outbreaks	Number of cases
Campylobacter	Poultry meat	9	3,231
Bacterial toxins other than <i>C. botulinum</i>	poultry meat	25	813
Salmonella	poultry meat	23	328
Salmonella	meat products	17	307
Listeria	meat products	1	11

What is the origin of the causative agents of food-borne diseases?

Campylobacter spp.

Campylobacter \rightarrow poultry meat

- 2017 (EFSA 2018):
 - 37,4 % positive foundings chicken meat
 - **31,5 %** turkey meat
- Campylobacter jejuni nebo C. coli (EFSA, 2018).

Salmonella spp.

- Salmonella: less common
 - 2,15 % pig carcasses,
 - 1,58 % pork cuts,
 - 0,17 % beef cuts,
 - 4,85 % chicken meat,
 - 4,18 % turkey meat.

Shiga-toxigenic Escherichia coli (STEC)

• STEC:

- 1,0 % beef cuts
- 5,3 % sheep meat cuts
- 3,0 % pork cuts

The origin of causative agents in meat?

• Direct occurrence in tissues

rare (exception – parasites)

Cross-contamination

- transmission from the carrier (skin, gut):
 - \circ hide removal
 - $\circ\ \text{evisceration}$

from the environment

- \circ tools, equipment, work surfaces
- \circ staff

Microbiological quality of carcass

The microbiological quality of meat depends on:

- the physiological status of the animal at slaghter
- the spread of contamination during slaughter/processing
- the temperature and other conditions of storage/distribution

Bacteria on the surface or in the depth of meat?

 bacteria can penetrate from the surface of meat where they have been cross-contaminated to deeper parts

• bacteria enter the meat **between the muscle fibers** after the post mortem stiffness - *rigor mortis*

Bacteria on the surface or in the depth of meat?

 bacteria enter the meat between the muscle fibers after the post mortem stiffness - rigor mortis

 Before the onset of *rigor mortis* bacteria are not able to overcome muscle structures - endomysium is closely associated with muscle fibers

Intramuscular connective tissue

Endomysium

Perimysium

Bacteria on the surface or in the depth of meat?

- contraction of muscle fibers on the advent of rigor mortis creates gaps between contractile elements and the surrounding endomysium
- The resulting spaces offer a way for bacterial invasion from the meat surface into its deeper layers.

• This process does not require the proteolytic activity of the ingressing bacteria.

 Heat treatment of meat - the most effective method of eliminating vegetative bacteria causing food-borne diseases

 The combination of temperature and time of 70 ° C for 2 min guarantees a reduction of more than 6 log orders (99.9999%) of vegetative forms of bacteria.

Equivalent heat treatment to reduce Listeria monocytogenes by 6 log(Stringer, Metris, 2018)

Temperature (°C)	time (min)
60	43,5
65	9,3
70	2,0
75	0,4
80	0,09
85	0,02

- for chicken breast fillets:
 - D₅₅ (temp. 55 °C) 24,0 min,
 - D₆₀ 3,83 min,
 - D₇₀ 0,10 min
- for duck breast meat:
 - D₅₅ 28,6 min,
 - D₆₀ 6,79 min,
 - D₇₀ 0,11 min

 If the contamination of poultry meat with salmonella occurs, then naturally, the probable level of contamination is 10 cfu/g, resp. even less.

 If the number of cfu/g is higher (100-1000/g), this means bacterial cell proliferation due to inappropriate storage at higher temperatures.

• If the number of cfu/g is higher (100-1000/g), this means bacterial cell proliferation due to inappropriate storage at higher temperatures.

 Analysis of food-borne outbreaks revealed that the number of salmonella bacterial cells received by patients was of 10⁶/person (= infectious dose)

Temperature resistance of selected vegetative bacteria

Bacterium		z-value (°C)			
	70 °C	65 °C	60 °C	55 °C	
Escherichia coli				4	
<i>Salmonella</i> Senftenberg			6,1		6,8
<i>Salmonella</i> Typhimurium		0,056			
Staphylococcus aureus			7,8		4,5

How does high temperature affect bacteria?

• D-value:

 time (in minutes) needed for decimal reduction (by 1 log = 90%) at given temperature

• z-value:

 $\,\circ\,$ the change in temperature (in ° C) required to reduce the D-value decimally

How does high temperature affect bacteria?

(chicken breast fillets, Karyotis et al., 2017)

Temp. (°C)	D-value (min)					
	Listeria mor	nocytogenes	Salmon	Salmonella spp.		
	control	marinated	control	marinated		
55	54,8	45,1	47,7	34,1		
57,5	14,9	11,6	12,0	10,4		
60	10,4	7,3	7,5	5,9		

- Vegetative bacteria without the ability to grow in cold temperatures:
 - E. coli
 - Salmonella spp.
 - Staphylococcus aureus
 - Campylobacter spp.

- Vegetative bacteria without the ability to grow in cold temperatures
- Vegetative bacteria with the ability to grow in cold temperatures:
 - Listeria monocytogenes
 - Yersinia enterocolitica
 - Aeromonas

- Vegetative bacteria without the ability to grow in cold temperatures
- Vegetative bacteria with the ability to grow in cold temperatures
- Psychrotrophic sporogenic bacteria (with the ability to grow at cold temperatures):
 - nonproteolytic Clostridium botulinum (group II),
 - psychrotrophic Bacillus cereus

- Vegetative bacteria without the ability to grow in cold temperatures
- Vegetative bacteria with the ability to grow in cold temperatures
- Psychrotrophic sporogenic bacteria (with the ability to grow at cold temperatures)
- Mesophilic sporogenic bacteria without growth at cold temperatures

- Psychrotrophic sporogenic bacteria (with the ability to grow at cold temperatures)
- Mesophilic sporogenic bacteria without growth at cold temperatures:

o proteolytic C. botulinum, C. perfringens, mesophilic B. cereus

Adequate food handling during preparation

 40-60% of foodborne diseases → inadequate food handling during preparation

cross-contamination or undercooking?

Adequate food handling during preparation

- **poultry meat** as a source of cross-contamination to:
 - other food products
 - hands of cook
 - surfaces during preparation
 - wooden/plastic cutting boards
 - \circ knives
- bacterial cells require only a few minutes to attach to a surface
- they are often difficult to remove after attachment

Adequate food handling during preparation

• most of the transfer rates for *Salmonella* spp. & *Campylobacter* spp.: ~ 0 to 3% (*Sarjit, Dykes,* 2017)

after the surfaces were rinsed with water/rinsed with water
& wiped with a kitchen towel → reduction by 0.3-4.1 log

- Shiga toxin-producing Escherichia coli (STEC)
 - serotype O157:H7: a significant risk to public health
 - emerged in the 1980s
 - ruminants (cattle, sheep) as zoonotic reservoir
 - infectious dose is low (10-100 organisms)
 - outbreaks linked to the consumption:
 - $\,\circ\,$ contaminated undercooked beef
 - $\,\circ\,$ contaminated raw vegetables & salad leaves

- October 2013, Pennsylvania, USA:
 - 14 confirmed (9 employees) & 10 probable (3 employees) cases
 - the median age 25 years (range, 3 to 72)
 - symptoms: diarrhea (92 %), vomiting (37 %), abdominal cramps (87 %); 8 cases hospitalized
 - 100 % confirmed cases ate restaurant (A) beef burgers
 - 71 % confirmed cases ate burger rare to medium

- deficiencies at restaurant A:
 - improper temperature holding
 - unsafe cooling
 - possibility for cross-contamination
- 78% samples of ground beef were positive for *E. coli* 0157:H7

 contaminated boxed beef introduced pathogen into the ground product

• hamburgers were undercooked

- general rules:
 - there is **no guarantee that beef will be free** from *E. coli* O157:H7
 - CDC recommendation: to cook beef to an internal temperature of 160 °F (71 °C)
 - E. coli O157:H7 is killed at temperature of 155 °F (68,3 °C)
 - o rare: 52-55 °C/4-5 min
 - **medium rare:** 55-60 °C/6-7 min
 - **medium:** 60-65 °C/8-9 min
 - $\circ\,$ well done: 70-100 °C/12 min

Temperature for food storage

- USA: "a rule 40-140"
 - store food at temperatura < 40 °F (4,4 °C)</p>
 - store food at temperature > 140 °F (60 °C)

