Nutrition of pigs, poultry and rabbits

MVDr. Macháček Miroslav, Ph.D.

Nutrition of pigs

Digestive anatomy and physiology of pigs

- · The mouth of the pig
 - Long and varies with breed
 - Birth piglets have
 - Eight deciduous teeth
 - · Four incisors teeth
 - · Four canines teeth
 - Adult pigs have
 - 44 teeth
 - Complete by 18 months of age
 - Canines in boars continue to grow throughout life

Digestive anatomy and physiology of pigs

- · Salivary glands
 - Saliva is a mixture of
 Water
 Electrolytes
 Mucus
 Enzymes
- Role of saliva
 - Lubricate the food Begin starch digestion to glucose
 Protect against disease
 - Recycle electrolytes to the intestines
- Volume and composition of saliva varies
 Dry feeds or a high feed intake

Digestive anatomy and physiology of pigs

· Gastrointestinal tract

Segment	Length (absolute)	Capacity (absolute)	Capacity (relative)
	(metres)	(litres)	(%)
Stomach		8	29
Small intestine	18.3	9.2	33
Caecum	0.2	1.55	6
Colon and rectum	5.0	8.70	32

Digestive anatomy and physiology of pigs

- · Gastrointestinal tract
 - Stomach
 - Simple, gastric stomach
 - · Relatively larger than that of other mono-gastrics
 - Oesophagus enters the stomach at the cardia

Digestive anatomy and physiology of pigs

- · Gastrointestinal tract
 - Stomach
 - Glandular epithelia
 - Cardiac gland region
 - » Produces a large amounts of mucus
 - Gastric gland region and pyloric gland region
 - » Producing
 - » Gastric acid
 - » Pepsin

Digestive anatomy and physiology of pigs

- · Gastrointestinal tract
 - The small and large intestines
 - Stomach empties into the duodenum through the pyloric sphincter
 - · Small intestines comprise
 - Duodenum, jejunum and ileum
 - 16-21 m long in the adult pig
 - · Large intestines comprise
 - Caecum and a colon

Digestive anatomy and physiology of pigs

- · Gastrointestinal tract
 - The small and large intestines
 - Small intestine
 - 80% of the length of the entire gut
 - Capacity almost 10 L
 - Relative lengths of the small intestine segments
 - » Duodenum • 5%
 - » Jejunum
 - 90%
 - » Ileum
 - 5%

Nutritional requirements of pigs

- Pigs require
 - Number of essential nutrients to
 - Growth
 - Reproduction
 - Lactation
 - Other functions
 - Factors increase the needed level of nutrients
 - · Genetic variation • Environment

 - · Availability of nutrients in feedstuffs
 - Disease levels
 - Stressors

Nutritional requirements of pigs

- Factors
 - Growth rate
 - Gender
 - Energy of diet
 - Environmental temperature
 - Crowding
 - Parity
- Stage of gestation
- Estimating
 - Nutrient requirements
 - Nutritionists
 - Feed manufacturers

Nutritional requirements of pigs

- · General classes of nutrients
 - Water
 - Carbohydrates
 - Fats
 - Protein
 - · Amino acids
 - Minerals Vitamins
- Derived from oxidation of carbohydrates and fats
- · Amino acids
 - From protein
 - Maintenance and tissue protein synthesis

Nutritional requirements of pigs

- · Other feed additives
 - Antibiotics
 - Chemotherapeutic agents
 - Microbial supplements
 - Prebiotics
 - Probiotics
 - Enzymes

Nutritional requirements of pigs

- Energy
 - Energy requirements
 - · Kilocalories (kcal) of
 - Digestible energy
 - Metabolizable energy
 - Net energy
 - · Most commonly used
 - Digestible energy
 - Metabolizable energy
 - Trend in industry to formulate diets

Nutritional requirements of pigs

- Energy
 - Requirements are influenced
 - · Weight
 - · Genetic capacity for
 - Lean tissue growth
 - Milk production
 - Environmental temperature

Nutritional requirements of pigs

- · Protein and amino acids
 - Required for
 - Maintenance
 - Muscle growth
 - · Development of fetuses
 - Supporting tissues in gestating sows
 - · Milk production in lactating sows

Nutritional requirements of pigs

- · Amino acids
 - 12 amino acids are synthesized
 - 10 amino acids must be provided in diet for normal growth
 - Arginine Histidine
 - Isoleucine
 - Leucine
 - Lysine
 - Methionine Phenylalanine
 - Threonine
 - Tryptophan

Nutritional requirements of pigs

- Amino acids
 - Greatest practical importance in diet
 - Lysine
 Tryptophan
 - Threonine
 Methionine

 - - Deficient in
 - LysineTryptophan
 - Grains (barley, and wheat)
 - Deficient in
 - LysineThreonine
 - Soybean meal
 - Deficient in
 Methionine

Nutritional requirements of pigs

- Protein
 - Milk protein
 - Well balanced in essential amino acids
 - Dried whey
 - · Protein with an excellent profile of amino acids
 - Total protein content is low
 - Animal proteins
 - · Good sources of
 - Minerals
 - B-complex vitamins

Nutritional requirements of pigs

- · Protein and amino acids
 - Diets for early weaned pigs
 - · High levels of
 - Dried animal plasma
 - Dried blood cells
 - · Deficient in methionine
 - High levels of methionine
 - Depress growth

Nutritional requirements of pigs

- · Protein and amino acids
 - Lvsine
 - · First limiting amino acid

Nutritional diseases of pigs

- · Diagnosis is difficult
- · Clinical signs are result of
 - Mismanagement
 - Infectious diseases
 - Parasitism
 - Malnutrition
- · Nutritional deficiencies
 - Poor appetite
 - Reduced growth
 - Unthriftiness
 - Difficult diagnosis

Nutritional diseases of pigs

- Nutritional therapy is not always clear
- · Longterm deficiencies
 - Lesions may be irreversible
- · Diagnosed positively
 - Clinical signs
 - Review of
 - Dietary history of the animals
 - Disease history of the animals
 - Management history of the animals

Nutritional diseases of pigs

- Protein deficiency
 - Result from
 - Suboptimal feed intake or deficiency of
 one or more essential amino acids
 - Causes
 - Reduced gains
 - Poor feed conversion
 - Fatter carcasses in
 Growing pigs
 - Growing pigs
 Finishing pigs
 - Lactating sows
 - Milk production is reduced
 - Excess weight lossPostweaning estrus
 - Delayed return to estrus

Nutritional diseases of pigs

- · Protein deficiency
 - Diets containing much protein
 - Laxative
 - · Less efficiently

Nutritional diseases of pigs

- Fat deficiency
 - Long-chain polyunsaturated fatty acids
 - Essential for swine
 - Linoleic acid
 - Essential
 - · Used to produce longer-chain fatty acids
 - Deficiency
 - Hair loss
 - Scaly dermatitis
 - Skin necrosis on the neck and shoulders
 - Unthrifty appearance in growing pigs

Nutritional diseases of pigs

- · Mineral deficiency
 - Calcium or phosphorus

 - Rickets
 Growing pigs
 - Osteomalacia
 Mature pigs

 - Mature Prop
 Signs
 Deformity and bending of long bones
 Young pigs
 Lameness
 Lameness
 Claim Prop
 Prof
 Pro

 - » Latine rice...

 Older pigs

 » Fractures and posterior paralysis

 Sows

 » Posterior paralysis

 Fnd of lactation

Nutritional diseases of pigs

- Mineral deficiency
 - Iron and copper
 - Reduce
 - Rate of hemoglobin formation
 - Nutritional anemia
 - - Suckling pigs
 - » Low hemoblogin and red blood cell
 » Pale mucous membranes

 - » Enlarged heart
 - » Skin edema about the neck and shoulders
 - » Listlessness
 - » Spastic breathing

Nutritional diseases of pigs

- · Mineral deficiency
 - Zinc
 - · Growing pigs
 - Parakeratosis
 - Diets
 - High in phytic acid
 - More than recommended amount of calcium

Nutritional diseases of pigs

- Mineral deficiency
 - Selenium and vitamin E
 - Young pigs
 - Sudden death
 - More susceptible to iron toxicosis

Nutritional diseases of pigs

- Vitamin deficiency
 - vitamin A
 - Disturbances

 - Epithelial tissues
 - » Respiratory systems» Reproductive systems

 - » Nervous systems » Urinary systems
 - » Digestive systems
 - Sows
 - EyelessWeak

Nutritional diseases of pigs

- · Vitamin deficiency
 - Vitamin D
 - Signs
 - Rickets
 - Stiffness - Weak and bent bones
 - Posterior paralysis

Nutritional diseases of pigs

- · Vitamin deficiency
 - Vitamin E
 - · Poor reproduction
 - Impaired immune system

Nutritional diseases of pigs

- · Vitamin deficiency
 - Biotin
 - · Excessive hair loss
 - Skin ulcerations
 - Dermatitis
 - Exudates around eyes

Nutritional diseases of pigs

- · Vitamin deficiency
 - Vitamin B₁₂
 - · Neonatal pigs
 - Hyperirritability
 - Voice failure
 - Pain and incoordination in the hindquarters

Nutritional requirements of pigs

- - Free and convenient access to water
 - Amount required
 - Amount required
 Age
 Type of feed
 Environmental temperature
 Status of lactation
 Fever
 High urinary output
 Diarrhea
 Normally
 - - 2-3 kg of water for every kg of dry feed
 - Lactating sows

 - Consume more
 High water content of milk

Nutritional requirements of pigs

- Water
 - Quality
 - Free of microbial contamination
 - Minerals
 - May create problems
 - » 7,000 ppm are unfit

Nutrition of poultry

Digestive anatomy and physiology of chickens

- · Mono-gastric animal
- · Simple but efficient digestive system
- · Intestinal digestion of high-quality feeds

Digestive anatomy and physiology of chickens

- · Digestive tract comprises
 - Oesophagus
 - Pre-crop
 Post-crop
 - Crop
 - Proventriculus
 - Gizzard
 - Small intestine Duodenum
 Jejunum
 Ileum
 - Large intestine
 - Caeca (paired)
 Colon

Digestive anatomy and physiology of chickens

- Mouth
 - Beak
 - Keratinised structure
 - · Overlying the mandibles and incisive bones
 - There are no teeth

Digestive anatomy and physiology of chickens

- Crop
 - Used in grain-eating birds
 - Store food
 - Storage function
 - · Allows birds to eat 'meals'
 - · ontinually digest food
 - Fermentation
 - Minor contributor to total energy production

Digestive anatomy and physiology of chickens

- Proventriculus (glandular stomach)
 - Dilation of gut
 - Contains pepsin and hydrochloric acid
 - Beginning of protein digestion

Digestive anatomy and physiology of chickens

- Gizzard (ventriculus)
 - Thick, muscular gizzard
 - Rounded organ
 - Covered on the serosal side by connective tissue
 - Circular and longitudinal muscles

 - » Produce strong grinding motions
 - Grit
 - Acts as a grinding agent akin to teeth in mammals

Digestive anatomy and physiology of chickens

- Small intestines
 - Digesta enters the duodenal loop

 - Centre of pankreas
 Pancreatic secretions include

 - Proteases
 Lipases
 Polysaccharidases
 Bicarbonate
 Neutralises pH of the chyme
 - Aktivity

 - Breaks down
 Proteins and peptides into amino acids
 Polysaccharides into simple sugars
 Lipids into fatty acids

 - Absorbed

Digestive anatomy and physiology of chickens

- · Large intestines
 - Two blind caeca
 - 16-18 cm in length
 - Fermentation

Digestive anatomy and physiology of chickens

- Colon
 - Short
 - Ends at cloaca
- Urodeum
 - Area in the caudal large intestine
 - Contains distal openings of ureters from kidneys
 - Uric acid => Deposited with faeces

Nutritional requirements of poultry

- Poultry convert feed
 - Quickly
 - Efficiently
 - Relatively low environmental impact
- · High rate of productivity
 - High nutrient needs
- · Criteria to determine the requirement include
 - Growth
 - Feed efficiency
 - Egg production

Nutritional requirements of poultry

- · Changes in feed intake
 - Environmental temperature
 - Dietary energy content
 - Genetic strain
 - Husbandry conditions
 - Sanitation
 - Presence of stressors
 - Diseases
 - Mycotoxins

Nutritional requirements of poultry

- · Amino acids
 - Poultry synthesize
 - · Proteins that contain 20 L-amino acids
 - Unable to synthesize
 - Arginine
 - Isoleucine
 Leucine
 - Lysine
 - Methionine
 - Phenylalanine
 - ThreonineTryptophan
 - Valine

Nutritional requirements of poultry

- · Amino acids
 - Can synthesized but dietary source is required
 - Histidine
 - Glycine
 - Proline
 - Tyrosine and cysteine
 - Can be synthesized from
 - Phenylalanine
 - Methionine

Nutritional requirements of poultry

- Vitamins
 - Vitamin A
 - Young chicks
 - Use less efficiently
 - Vitamin D
 - Cholecalciferol
 - Vitamin D₃
 - Ergocalciferol
 - Vitamin D₂
 - Used with an efficiency of vitamin D₃

Nutritional requirements of poultry

- Vitamins
 - Vitamin E
 - Antioxidant
 - Diets with high in long-chain highly polyunsaturated fatty acids
 - Choline
 - Part of
 - Phospholipid
 - Acetylcholine
 - Source of methyl groups
 - Requirement for choline
 - Cannot completely replace in diet

Nutritional requirements of poultry

- Vitamins
 - Are subject to degradation over time
 - · Accelerated by
 - Moisture
 - Oxygen
 - Trace minerals
 - Heat
 - Light

Nutritional requirements of poultry

- Minerals
 - Much of phosphorus
 - · Is not absorbed efficiently
 - Calcium
 - · Laying hens
 - Increases with rate of
 - Egg production
 - Age of hen - Ratio of
 - Calcium: Phosphorus
 - 2:1

Nutritional requirements of poultry

- · Other nutrients and additives
 - Necessary for growth
 - Vitamin C
 - Pyrroloquinoline quinone
 - · Several heavy metals
 - Non-nutrient antioxidants
 - Ethoxyquin
 - Protect
 - » Vitamins
 - » Unsaturated fatty acids
 - Enzymes

Nutritional deficiencies

- · Difficult to diagnose
- Signs
 - Affected living birds
 - Necropsies
 - Tissue analyses
- · Stress may interfere with
 - Absorption nutrient
 - Increase quantity
 - Stress
 - Infections

 - BacterialParasiticViral
 - · High or low temperatures

Protein, amino acid, and energy deficiencies

- · Protein, amino acid low
 - Slowly grow
- · Deficiency of various amino acids
 - Signs
 - Peculiar
 - · Loss of pigment
 - · Retarded growth
 - Reduced egg size or egg production

Protein, amino acid, and energy deficiencies

- · Deficiency of energy
 - Bird will
 - · Grow slowly
 - Stop ovulating
 - Ketosis

Vitamin deficiencies

- · Inadvertent omission of vitamin premix
- Signs
 - Vitamin B
 - Appear first
 - vitamin A
 - Months
- · Vitamin destruction factor
 - Time
 - Temperature
 - Humidity

Vitamin deficiencies

- Vitamin A
 - Egg production drop
 - Hatchability decreases
 - Embryonic mortality increases

Vitamin deficiencies

- Vitamin D₃
 - Required for absorption and metabolism of
 - Calcium
 - Phosphorus
 - Deficiency
 - Rickets
 - Osteoporosis
 - · Poor eggshell quality

Vitamin deficiencies

- Vitamin B₁₂
 - Essential of
 - Enzyme systems
 - Transfer or synthesis methyl groups
 - · Metabolism of
 - Nucleic acids
 - » Proteins
 - Functions
 - Carbohydrate
 - Fat metabolism

Vitamin deficiencies

- Vitamin B₁₂
 - Signs
 - · Growing chickens
 - Reduced
 - » Weight gain
 - » Feed intake
 - Poor featheringNervous disorders
 - Anemia
 - Gizzard erosion

Mineral deficiencies

- Calcium and phosphorus
 - Lack of normal skeletal calcification
 - Rickets
 - Reduced shell quality
 - Osteoporosis

Mineral deficiencies

- · Iron and copper
 - Anemia
 - Loss of pigmentation in feathers
 - Aflatoxin reduces iron absorption

Mineral deficiencies

- - Young chicks

 - foung chicks

 Retarded growth

 Shortening leg bones

 Thickening leg bones

 Enlargement hock joint

 Poor feathering

 Loss of appetite

 Mortality
 - Hens
 Reduce egg production
 - Hatched chicks
 - Weak
 Cannot
 - Accelerated respiratory rates

Nutritional requirements of poultry

- Water
 - Essential nutrient
 - Factors influence water intake
 - Environmental temperature
 - · Relative humidity
 - Diet
 - Salt level
 - Protein level
 - · Birds' productivity
 - Growth
 - Egg production

Nutritional requirements of poultry

- Water
 - Cool
 - Clean
 - · Uncontaminated by
 - Minerals
 - Potential toxic substances

Nutritional requirements of poultry

- Water
 - Requirements
 - Highly variable
 - · Deprivation for
 - ≥12 hours
 - » Adverse on
 - Growth
 - · Egg production
 - ≥36 hours
 - » Increase in mortality

Nutrition of rabbits

Anatomy and functions of the rabbit digestive tract

- · Rabbits masticate their feed very thoroughly
 - As many as 120 jaw movements per minute
 - Ingested material is broken down to small particle sizes
- Stomach
 - Thin-walled
 - Pouchlike
 - pH in the adult
 - From 1 to 2
 - Kills bacteria and other microorganisms
 - » Stomach and small intestine are essentially sterile

Anatomy and functions of the rabbit digestive tract

- Stomach
 - Secretions
 - · Hydro chloric acid
 - · Digestive enzymes
 - Pepsin (secreted as pepsinogen)
 - Mucus
 - Storage organ
 - Metering ingesta into the small intestine
 - · Never completely empty

Anatomy and functions of the rabbit digestive tract

- Stomach
 - High acidity => Some fermentation occurs

Anatomy and functions of the rabbit digestive tract

- Small intestine
 - Major site of
 - Digestion
 - Absorption
 - Divided into three functional areas
 - Duodenum
 - Jejunum
 - Ileum
 - Duodenum
 - · Neutralization of the acid material coming from the stomach
 - Mixing by muscular churning action

Anatomy and functions of the rabbit digestive tract

- · Small intestine
 - Pancreas
 - Source of major digestive enzymes
 - Carbohydrate digestion
 - Protein digestion
 - Fat digestion
 - Alkaline secretions
 - Neutralize stomach acid

Anatomy and functions of the rabbit digestive tract

- · The hindgut
 - Fermentation in the cecum
 - Selective excretion of fiber
 - Coprophagy
 - Reingestion of cecal contents

Anatomy and functions of the rabbit digestive tract

- The hindgut
 - Appendix
 - Secretes an alkaline fluid
 - Buffer the volatile fatty acids produced during cecal fermentation
 - · Lymphoid organ
 - Have an influence on microbial fermentation

Anatomy and functions of the rabbit digestive tract

- · The hindgut
 - Coprophagy or cecotrophy
 - Consumption of the cecal contents
 - Composition of soft feces, cecal contents, and hard feces suggests that the soft feces (cecotropes) are of cecal origin
 - Soft feces
 - Surrounded by a mucilaginous membrane
 - Cecotropes
 - » Are consumed as discrete clusters
 - » Continue to ferment in stomach

Anatomy and functions of the rabbit digestive tract

- · The hindgut
 - Cecotrophy
 - · Integral part of a rabbit's digestive physiology
 - · Necessary for maximum digestibility of
 - High-fiber (low-energy) diets
 - Low-fiber (high energy) diets
 - Important in efficient digestion of protein
 - Cecotropes are rich in B vitamins

Anatomy and functions of the rabbit digestive tract

- · The hindgut
 - Excretion of
 - Hard feces
 - During first 4 hour after feeding
 - · Soft feces
 - Rabbit licking anal area => Consuming the cecotropes

Anatomy and functions of the rabbit digestive tract

- · The hindgut
 - The composition of hard and soft feces
 - Influenced by diet
 - Low dietary protein
 - Less effect on reducing protein content
 - Hypomotility of hindgut
 - Diarrhea
 - Cecal impaction

Nutritional requirements of rabbits

- Rabbits
 - Small herbivores
 - Specialized
 - · Feeding needs
 - Digestive systems
 - Selective eaters
 - Naturally pick and choose foods higher in energy density
 - Predisposes to obesity

Nutritional requirements of rabbits

- Bacterial population in cecum
 - Gram-positive Bacteroides sp.
 - Very sensitive to oral antibiotics

Nutritional requirements of rabbits

- Fiber
 - Digest fiber poorly
 - · Selective separation and rapid excretion of large particles in the hindgut
 - High-fiber intake
 - · Ad lib timothy hay
 - Absorb bacterial toxins
 - Eliminate them via hard feces
 - Diets low in fiber
 - · Increased incidence of intestinal problems
 - Enterotoxemia

Nutritional requirements of rabbits

- Fiber
 - Indigestible fiber
 - · Important for stimulating gastrointestinal tract motility
 - · Preventing behavioral problems
 - Fur chewing
 - · Providing dental wearing
 - Stimulating
 - Appetite
 - Ingestion of cecotrophs

Nutritional requirements of rabbits

- Carbohydrates
 - Inhibit motilin
 - Motilin
 - Polypeptide hormone
 - Secreted by cells of
 - » Duodenum
 - » Jeiunum
 - Stimulates gastrointestinal tract smooth muscle
 - Starch
 - · proliferation of pathogenic bacteria
 - Clostridium spiroforme
 - » Produce toxin

Nutritional requirements of rabbits

- Carbohydrates
 - Adult rabbits digest starch more efficiently than young
 - Polysaccharides
 - Gluco-oligosaccharides
 - Diarrhea in young rabbits
 - Fructo oligosaccharides - Fruits

 - Fruits
 Vegetables
 » Onion
 » Chicory
 » Garlic
 » Asparagus
 » Banana
 - Artichoke
 Decrease morbidity in rabbits after introduction of pathogenic Escherichia coli
 - Galacto-oligosaccharides

Nutritional requirements of rabbits

- · Volatile fatty acids
 - Cecum fermentation
 - Aid in control of pathogenic organisms
 - · Maintain normal pH in cecum
 - pH 6 7

Nutritional requirements of rabbits

- Vitamins

 - Necessary
 Vitamins A, D, E
 Vitamins B and K
 - Bacteria in gut synthesize
 - Dietary supplements are u
 Increase daily requirements
 - DiseaseStress
 - Vitamins A and E
 - Feed preparation and storage destroys
 Oxidation
 - Alfalfa meal
 Sufficient vitamin A

 - Sufficient vitamin A
 Vitamin E deficiency
 Infertility
 Muscular dystrophy
 Fetal death
 Neonatal death

Noninfectious diseases of rabbits

- · Dental disease
 - Present as
 - · Excess salivation
 - · Teeth grinding
 - Anorexia

Noninfectious diseases of rabbits

- · Dental disease
 - Dental malocclusion
 - · Incisors, premolars and molars
 - Grow throughout life
 - · Overgrowth of incisors
 - · Difficulty in eating and drinking
 - Due to
 - Malnutrition
 - Mistakes in husbandry

Noninfectious diseases of rabbits

- · Dental disease
 - Dental malocclusion
 - · Cheek teeth
 - Overgrow
 - Cause
 - » Tongue lesions
 - » Buccal lesions
 - Husbandry
 - Inadequate nutrition

Noninfectious diseases of rabbits

- Gastric stasis, hair chewing, and hairballs
 - Variety of causes
 - Stress Pain
 - Prey species
 - Not overtly show signs of discomfort or pain
 - Led to
 - Dehydration
 Pain
 - Hepatic lipidosis
 - Decreased food intake
 Affects homeostasis
 Water intake is decreased

 - Decrease energy uptake
 Produce hepatic lipidosis

Noninfectious diseases of rabbits

- · Gastric stasis, hair chewing, and hairballs
 - Groom themselves constantly
 - · Hair normally passes through
 - Excreted with fecal pellets
 - High-fiber diet
 - Fiber mesh
 - Prevents from becoming too dense
 - Hair can more easily pass through
 - Hair chewing
 - · Low fiber in diet

Noninfectious diseases of rabbits

- Ketosis
 - Rare disorder
 - Predisposing factors
 - Obesity
 - · Lack of exercise
 - Signs
 - Dullness of eyes
 - Sluggishness
 - Respiratory distress
 - Prostration
 - Death

Noninfectious diseases of rabbits

- Urolithiasis
 - Signs
 - Hematuria
 - Calcium metabolism

 - Rabbits do not require vitamin D₃
 Renal elimination of calcium is higher
 - · Feeding calcium-rich diet - Metabolically inactive rabbit

 » NOT

 • Growing

 • Pregnant

 • Lactating

 Absorbable bysocrabiting

 - Abnormal hypercalciuria
 - Calcium
 Bladder sludge
 Form uroliths

- Noninfectious diseases of rabbits
- Urolithiasis
 - pH increases to 8.5-9.5
 - · Normal urine has 8.2
 - Signs

 - Nutritional imbalanceGenetic predispositionInfection

 - · Inadequate water intake
 - Metabolic disorders
 - Alfalfa
 - · High in calcium
 - Switching to
 Grass
 Timothy hay

Nutritional requirements of rabbits

- Water
 - Approximately 120 mL/kg/day
 - Dehydrated rabbits
 - 240 mL/kg/day
 - 10 mL/kg/hr
 - Anorexia
 - Most often also dehydrated
 - Drink more from open bowl than a sipper bottle