Student's t-test

t-test is used for testing for difference between <u>2 population means (μ)</u>. Calculation of a <u>test statistic *t*</u> results from the estimation of parameters μ and σ in samples: \overline{x} and *s*. Calculated test statistic is compared with a table critical value, that we find out in t-distribution tables according to the chosen α error and given v (degree of freedom).

According to data sets, that are available for comparison, we can employ different types of t-test:

<u>I. Population vs. Sample Comparison</u> (One sample t-test)

This test is used for evaluation of experiments, where we know population μ (e.g. physiological value of some biochemical indicator) = const. In the experiment we verify a hypothesis, that a test sample comes from a population with this known μ (H₀: μ = const.)

$$t = \frac{\left|\bar{x} - \mu\right|}{\sqrt{\frac{s^2}{n}}}$$
 (\bar{x} -sample mean, μ - population mean, s–sample SD, n–number of items in sample)

Calculated *t* is compared with a critical value $t_{(\alpha,\nu)}$, where $\nu = n-1$ and $\alpha = 0.05$ or 0.01:

* If $t \le t_{(\alpha,\nu)} \Rightarrow$ statistically **insignificant** difference between tested parameters at specific α (it means that experiment has been *ineffective*)

If $t > t_{(\alpha,\nu)} \Rightarrow$ statistically **significant** difference between tested parameters (at $\alpha = 0.05$) or

highly significant difference (at $\alpha = 0.01$)

(it means that the experiment has been *effective* – it caused a change of the mean in comparison with the population: the sample comes from another population with $\mu \neq \text{const}$).

II. Samples comparison (population μ is not known)

1) paired experiment – there are 2 sets of measurements in 1 group of animals: 1 before an experimental treatment and 1 after the treatment \Rightarrow obtained values are paired. We calculate **differences between paired values**, then \overline{x} and SD (s) of differences. We test a hypothesis, that μ of the measurements before and after the treatment are equal (or mean value of the differences between this measurements = 0). (H₀: $\mu_{differ}=0$)

$$t = \frac{\left| \overline{x} \right|}{\sqrt{\frac{s^2}{n}}} \qquad \qquad \nu = n-1$$

* If $t \le t_{(\alpha,\nu)} \Rightarrow$ stat. **insignificant** difference between means of values before and after the treatment at the specific α (the experiment has not been effective, **H**₀: $\mu_{\text{differ}}=0$)

If $t > t_{(\alpha,\nu)} \Rightarrow$ statistically **significant** difference between means (at $\alpha = 0.05$) or **highly significant** difference (at $\alpha = 0.01$) (experiment has been effective - μ after the treatment is different from μ before the treatment: H₀ is not true.)

2) unpaired experiment – 2 different sets of data: Experimental and Control group of animals. We test a hypothesis, whether μ₁ (test group) has the same value as μ₂ (control group).
 H₀: μ₁ = μ₂ sample 1 (n₁) : we calculate x̄ 1, s²₁ sample 2 (n₂) : we calculate x̄ 2, s²₂

The populations sampled can be different variable – this affects calculation of t-test. Therefore we have to determine **difference between variances** at first (to specify what type of calculation formula we have to use for the following t-test). F-test:

$$F = \frac{bigger \ s^2}{smaller \ s^2} - (v_N = n - 1)$$

- $(v_D = n - 1)$

Calculated F is compared with the critical value, that we find according to α and degree of freedom : v_N (DF of numerator) and v_D (DF of denominator).

According to F-test result:

• If
$$F \le F_{\alpha(vN, vD)} \Rightarrow$$

a) $\sigma_1^2 = \sigma_2^2$:
 $t = \frac{|\bar{x}_1 - \bar{x}_2|}{\sqrt{\frac{(n_1 - 1) * s_1^2 + (n_2 - 1) * s_2^2}{n_1 + n_2 - 2}}} \qquad v = n_1 + n_2 - 2$
(For $n_1 = n_2 = n$: $t = \frac{|\bar{x}_1 - \bar{x}_2|}{\sqrt{\frac{s_1^2 + s_2^2}{n_1}}} \qquad v = (n-1) \cdot 2$)

• If
$$F > F_{\alpha(\nu N, \nu D)} \Rightarrow$$
 b) $\sigma_1^2 \neq \sigma_2^2$:

$$t = \frac{\left|\bar{x}_1 - \bar{x}_2\right|}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \qquad \nu = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_2}\right)^2} \qquad (\text{ for } n_1, n_2 > 30: \nu = \infty)$$

$$\left(\text{ For } n_1 = n_2 = n: \quad t = \frac{\left|\bar{x}_1 - \bar{x}_2\right|}{\sqrt{\frac{s_1^2 + s_2^2}{n_2}}} \right)$$

Conclusion:

* If $t \le t_{(\alpha,\nu)} \Rightarrow$ statistic. **insignificant** difference between μ_1 and μ_2 at specific α (**H**₀: $\mu_1 = \mu_2$ is true; it means that the experiment has not been effective)

If $t > t_{(\alpha,\nu)} \Rightarrow$ statistically **significant** difference between μ_1 and μ_2 (at $\alpha = 0.05$) or **highly significant** difference (at $\alpha = 0.01$)

(it means that the experiment has been effective and caused a change of mean value in treated variable compared to the untreated control: $\mu_1 \neq \mu_2$).