Nelineární korelační závislost
Protože je výpočet nelineárních regresních rovnic bez využití výpočetní techniky a statistického softwaru je značně namáhavý, převádí se v praxi většinou nelineární závislost na lineární pomocí vhodné transformace původních hodnot (např. logaritmováním, vhodnou substitucí apod.). Jinou, poměrně často používanou možností řešení nelineárních závislostí mezi náhodnými proměnnými v biostatistice je použití výpočtu Spearmanova korelačního koeficientu.
Spearmanův koeficient pořadové korelace
Jde o neparametrickou metodu, která využívá při výpočtu pořadí hodnot sledovaných veličin, nevyžaduje tedy normalitu dat. Výhodou je, že lze tuto metodu použít pro popis jakékoliv závislosti - lineární i nelineární. Spearmanův korelační koeficient, jehož teoretickou hodnotu značíme „rSp“, používáme nejčastěji pro měření síly vztahu u takových veličin, kdy nemůžeme předpokládat linearitu očekávaného vztahu nebo normální rozdělení sledovaných proměnných X a Y. Závislost proměnných může mít obecně vzestupný nebo sestupný charakter. Jestliže je rSp = 1, resp. rSp = -1, korelační dvojice (xi, yi) leží na nějaké vzestupné, resp. klesající funkci. Pro malé rozsahy n je výpočet Spearmanova korelačního koeficientu méně pracný než výpočet Pearsonova parametrického korelačního koeficientu. Proto je možno ho použít i k hodnocení lineárních závislostí; jeho použití je tu však spíše orientační (využívá méně informací z dat) a na rozdíl od parametrického koeficientu je méně účinný.
Výpočet Spearmanova korelačního koeficientu vychází z pořadových čísel proměnných xi a yi (korelačních dvojic) naměřených u n jedinců výběrového souboru. Jsou-li hodnoty proměnných xi a yi seřazeny vzestupně do dvou řad a každé hodnotě je přiděleno pořadí, pak koeficient pořadové korelace je dán vztahem:
kde
Di = rozdíl mezi pořadím hodnot xi a yi příslušných korelačních dvojic
n = počet korelačních dvojic
Vypočtený koeficient porovnáme s tabelovanými kritickými hodnotami Spearmanova korelačního koeficientu pro zvolené a a dané n (viz Tabulky: Kritické hodnoty Spearmanova korelačního koeficientu rSp :
Je-li |rSp| > rSp(α, n) => koeficient pořadové korelace je významný na hladině významnosti a (tzn. že korelace sledovaných veličin byla prokázána na úrovni celé populace)
Je-li |rSp| < rSp(α, n) => koeficient pořadové korelace je nevýznamný na hladině a (tzn. že korelace sledovaných veličin v populaci neexistuje)
Příklad:
U 10 pacientů byl sledován vztah mezi pH moči (xi) a hladinou K+ iontů (mmol.l-1) v krevním séru (yi). Existuje závislost těchto ukazatelů? Zjištěné údaje jsou shrnuty do následující tabulky:
Pacient č. 1 2 3 4 5 6 7 8 9 10
pH moči 5,92 7,00 6,90 6,05 6,80 6,10 6,00 6,50 7,20 6,12
K+ ionty 4,0 4,8 4,9 4,2 4,8 4,9 4,0 4,3 4,5 4,7
Postup:
1. Seřadíme vzestupně hodnoty xi a yi do dvou variačních řad – tím zjistíme pořadí jednotlivých hodnot xi a yi. Vyskytnou-li se stejné hodnoty ve variační řadě, přidělíme každé z nich tzv. průměrné pořadí - např. seřazená variační řada hodnot pro hladinu K+ iontů má první dvě hodnoty stejné (4,0 mmol.l-1), tzn., že obě hodnoty dostanou pořadové číslo 1,5. , které bylo vypočteno jako průměr z pořadí 2. + 1..
2. Sestavíme tabulku podle pořadí hodnot xi a yi pro každou korelační dvojici :
Pacient č. 1 2 3 4 5 6 7 8 9 10
pH moči 1. 9. 8. 3. 7. 4. 2. 6. 10. 5.
K+ ionty 1,5. 7,5. 9,5. 3. 7,5. 9,5. 1,5. 4 . 5. 6 .
3. Sestavíme tabulku vypočtených rozdílů pořadí Di proměnné xi a proměnné yi a rozdíly umocníme na druhou:
Rozdíl
pořadí Di +0,5 -1,5 +1,5 0 +0,5 +5,5 -0,5 -2,0 -5,0 +1,0
Di2 0,25 2,25 2,25 0 0,25 30,25 0,25 4,00 25,0 1,0
4. Vypočteme součet mocnin rozdílů pořadí:
5. Vypočteme Spearmanův korelační koeficient rSp:
6. Vypočtený koeficient porovnáme s tabulkou významnosti koeficientů pořadové korelace pro n =10 a zvolenou chybu a (Kritické hodnoty Spearmanova korelačního koeficientu rSp):
Kritická hodnota rSp(0,05,10) = 0,564
|0,603| > rSp(0,05,10) Þ korelační koeficient je statisticky významný
Závěr: Protože Spearmanův korelační koeficient je statisticky významný, znamená to, že vzájemná korelace mezi pH moči a hladinou K+ iontů v krevním séru u pacientů byla prokázána (p < 0,05).